TWEET final Talk

Second harmonic Generation on 2D ferroelectrics

Rohit Kumar *Department of Physics, Universituy of Naples, Federico II.*

1

Contents

Overview of the project
Hafnium Zirconium Oxide (HZO)

➢Germanium Telluride (GeTe)

➤SHG measurements

Magnetic measurements on HZO thin films

Phase transition in pure and doped GeTeConclusion

TWEET overview

Materials:

Hafnium Zirconium Oxide (HZO) Germanium Telluride (GeTe)

Hafnium Zirconium Oxide Crystalline phases of P-E cycle for different compositions of the system

Claudia Richter, et .al. Si Doped Hafnium Oxide—A "Fragile" Ferroelectric System. Adv. Electron.Mater.2017, 3, 1700131.

Germanium Telluride (GeTe)

Germanium Telluride

- GeTe is Ferroelectric Rashba Semiconductor
- GeTe is Silicon compatible
- Rhombohedral unit cell of GeTe (polarization pointing along the pseudo-cubic [111] axis)
- FE hysteresis loop of GeTe(111) measured by piezo-force microscopy

Second Harmonic Generation (SHG)

Laser matter interaction

$$P = \epsilon_0(\chi^{(1)}E_{\omega} + \chi^{(2)}E_{\omega}^2 + \chi^{(3)}E_{\omega}^3 + \cdots)$$

= $P^{(1)} + P^{NL}$

- $\chi^{(1)}\,$ describes the linear optics, e.g., how lens work.
- $\chi^{(2)} \,\,$ describes the second order effects such as SHG.

Electric dipole SHG $P_i(2\omega) = \chi_{ijk}^{(2)} E_j(\omega) E_k(\omega)$ **Electric Quadrupole SHG** $Q_i(2\omega) = \chi_{ijkl}^{(2)} E_j(\omega) K_k E_l(\omega)$

Ferroelectrics

XRD Results of HZO

- Peak shifts at smaller angles indicating d₁₁₁ elongation in thinner films (orthorhombic phase)
- 9.2 nm HZO thin film has largest remanent polarization

Done at ICMAB

Electrical measurements

Experimental Geometry

Experimental set up (Beam path)

Alpha α : Polarization angle ϕ : Sample azimuthal angle θ : Angle of incidence

Spectral and power characterization of SHG

SHG results

Alpha scans

- HZO coverage affects the SHG components
- PP has a maximum for thinnest and SP has a minimum

Azimuthal Scans

- Five non-vanishing polarization combinations but they don't belong to the same origin
- PS and SS are not changing with the film thickness
- No single point group symmetry that can fit the data

Looking for a real symmetry ?

Symmetry	Non-vanishing elements
o-HZO, mm2	xzx = xxz
	yyz = yzy
	ZXX
	zyy
	ZZZ
m-HZO, 2/m	Each element vanishes.
t-HZO, 4/mmm	Each element vanishes.

Ratio b/w LSMO-thick and LSMO-thin samples

Blue curve represents the S-out ratio between LSMO thick and LSMO thin samples.

Set 2: LSMO = 8 and 20 nm HZO = 9 nm

- If the SHG signal was scaling with LMSO then we should have a circle.
- In case of S-out, it seems a circle but in P-out, there is an elongation in PP direction and SP component is lying almost around 1.
- This suggests that SHG cannot be solely LSMO bulk dependent but there is an interfacial contribution too.

Magnetic measurements on HZO thin films

M vs T for all samples

Normalized Data Plots

To find Tc, we use first derivative

Sample	Тс (К)
LSMO_5.5nm	302
HZO_5.6nm	284
HZO_8.5nm_RT	295
HZO_8.5nm_800	282
HZO_8.6nm	292
HZO_11nm	291
HZO_22nm	280
HZO_44nm	283

M vs H for HZO thin films

HZO thickness vs Tc vs Polarization

Magnetic coerecivity vs Tc vs Polarization

All parameters toghther

Part II Germanium Telluride

Growth and Characterization of Pure and doped GeTe

Binding energy (eV)

MBE Process: Diffusion of Ge into SnTe matrix when two layers of GeTe and SnTe were grown on top of each other

XRD and Linear spectra

Optical SHG set-up

SHG Results

Temperature scans of pure GeTe and Silicon

Results

800

Si(111)

Results

Note : For doped GeTe, the fitting function we used is

$$I(2\omega) \propto 1/4 A (\cos 3\phi) + B \cos(2\beta + \phi))^2$$

Lukas Mendel, NATURE COMMUNICATIONS | (2018) 9:516.

SHG Imaging

Conclusion I

- It is confirmed by the SHG that the LSMO coverage has a significant impact on the HZO FE
- PP and SP are the only components which seems to be affected by the FE in HZO, but the mechanism behind it remains to be clarified
- The SHG cannot be solely generated by LSMO but there is an interfacial contribution from HZO/LSMO interface
- We didn't find any symmetry which can fit our data in electric dipole SHG consideration

Prospective

- SHG spectroscopy of HZO samples at higher frequency ?
- > SHG Imaging.
- Magnetic measurements.
- High temperature scans.

Conclusion II

- We measure the anisotropies at different wavelengths in order to find the maximum signal
- Temperature dependence measurement shows a higher values of phase transition(T_c = 710 K)for undoped films and 505 K for doped films
- SHG imaging on both pure and doped films shows tiny domains (probably nano-domains)
- The Curie temperature increases with the content of Germanium

Prospects

- It is also possible to measure SHG image with respect to temperature to see the dependence of domains with time
- gating of the ferroelectric semiconductor (switching of the polarization on macroscopic area)

Adapted from A. Lebedev *et al.,* Ferroelectrics, 298, 189-197 (2004)

Acknowledgements

SLAM group

- Prof. Lorenzo Marucci
- Dr. Domenico Paparo
- Dr. Andrea Rubano

ETH Zurich

- Prof. Manfred Fiebig
- Dr. Thomas Lottermoser
- Prof. Morgon Trassin

ICMAB Barcelona. Spain

- Dr. Florencio Sanchez
- Dr. Ignasi Fina

LABORATORY OF MULTIFUNCTIONAL THIN FILMS AND COMPLEX STRUCTURES INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, ICMAB-CSIC

Thank You