Workshop TWEET

Aula Beltrami, Politecnico di Milano, 5 June 2023

Ferroelectric switching of spin-to-charge conversion for ultralow power spintronics

Federico Fagiani, Luca Nessi, Giovanni Gandini, Riccardo Bertacco, Matteo Cantoni

& Christian Rinaldi Department of Physics, Politecnico di Milano, Milan, Italy

Spin-based electronics in Polifab

C. Rinaldi Associate Professor

F. Fagiani Ph.D. student

G. Gandini Ph.D. student

M. Cantoni Associate Professor

R. Bertacco Full professor

Growth of magnetic and ferroelectric materials

Magnetization switching for magnetic memories

Rashba semiconductors for spin-based computing

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

Some credits

POLITECNICO DI MILANO (MILAN)

C. Rinaldi

R. Bertacco

D. Petti

L. Nessi

E. Albisetti

F. Fagiani

Project ECOS - Electric *Control Of Spin transport* fondazione c a r i p l o

> PRIN TWEET (2019-2022) 2017YCTB59

CNR (CHIETI & ROMA)

R. Calarco

S. Cecchi

UNIVERSITY OF NORTH TEXAS (DENTON)

M. Buongiorno Nardelli

CEA, CNRS (GRENOBLE)

L. Vila

J.-P. Attane

P. Noel

UNITE MIXTE DE PHYSIQUE, CNRS (THALES)

M. Bibes

S. Varotto

UNIVERSITY OF GRONINGEN

J. Sławińska

TWEET, Milano, 0<u>5/06/2023</u>

Outline

- General aim
- Ferroelectric Rashba semiconductors
 - I. Rashba effect in GeTe
 - II. Gating of ferroelectricity in the semiconductor GeTe
 - III. Spin-charge interconversion in GeTe

- Materials engineering
- Conclusions and perspectives

TWEET, Milano, 05/06/2023

Outline

General aim

- Ferroelectric Rashba semiconductors
 - I. Rashba effect in GeTe
 - II. Gating of ferroelectricity in the semiconductor GeTe
 - III. Spin-charge interconversion in GeTe

- Materials engineering
- Conclusions and perspectives

TWEET, Milano, 05/06/2023

Beyond the transistor: why and when?

N. Jones, The information factories, Nature 561, 163 (2018)

https://eds.ieee.org/about-eds/75th-anniversary-of-the-transistor

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

A new physical substrate is needed

Pathways to quantum materials storage and computing devices

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

State retention and state switching with collective order parameters

The ratio of the switching energy to the barrier height is optimal for ferro-electrics

S. Manipatruni et al., Beyond CMOS computing with spin and polarization, Nature Physics 14, 338 (2018)

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

christian.rinaldi@polimi.it http://rinaldi.faculty.polimi.it

9

Magneto-electric spin-orbit device (MESO)

S. Manipatruni et al., Nature, 565, 35-42 (2019)

TWEET, Milano, 05/06/2023

Read-out efficiency

Relevant numbers for MESO logic (T > 420 K)

Exploring other solutions

TWEET, Milano, 05/06/2023

http://rinaldi.faculty.polimi.it

State-of-art

Magneto-electric spin-orbit logic

Ferro-electric spin-orbit logic

TWEET, Milano, 05/06/2023

Roberto Carlos, French – Brazil 1997

TWEET, Milano, 05/06/2023

Outline

- General aim
- Ferroelectric Rashba semiconductors
 - I. Rashba effect in GeTe
 - II. Gating of ferroelectricity in the semiconductor GeTe
 - III. Spin-charge interconversion in GeTe

- Materials engineering
- Conclusions and perspectives

TWEET, Milano, 05/06/2023

FErroelectric Rashba SemiConductors (FERSC)

Rashba physics in ferroelectrics

Rashba splitting and spin-momentum locking

 k_v (a) Ε EF k_x

$$H_{SO} = \frac{\hbar}{4m^2c^2} (\nabla V \times \mathbf{p}) \cdot \boldsymbol{\sigma}$$

L. L. Tao and E. Y. Tsymbal, J. Phys. D 54, 113001 (2021) A. Manchon et al., Nature Materials 14, 871 (2015)

Ferroelectric control of the spin transport in ferroelectric Rashba semiconductors

TWEET, Milano, 05/06/2023

D. Di Sante et al., Adv. Mater. 25, 509 (2013)

Non-volatile Rashba SOC in FERSC

Germanium Telluride as FERSC

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

How to look at the band structure for two opposite ferroelectric polarizations?

Spin and Angular Resolved Photoemission Spectroscopy (SARPES)

Interplay between ferroelectricty and Rashba spin texture

Opposite ferroelectric polarizations corresponds to opposite spin circulation

TWEET, Milano, 05/06/2023

Outline

- General aim
- Ferroelectric Rashba semiconductors
 - I. Rashba effect in GeTe
 - **II.** Gating of ferroelectricity in the semiconductor GeTe
 - III. Spin-charge interconversion in GeTe

- Materials engineering
- Conclusions and perspectives

Gating of ferroelectric semiconductors

P. W. M. Blom et al., Phys. Rev. Lett. 73, 2107 (1994)

TWEET, Milano, 05/06/2023

Polarization-dependent resistance of metal/GeTe junctions

S. Varotto, CR et al., Nature Electronics 4, 740–747 (2021)

TWEET, Milano, 05/06/2023

christian.rinaldi@polimi.it http://rinaldi.faculty.polimi.it

25

Electrical gating: endurance and switching time

TWEET, Milano, 05/06/2023

Correlation of resistivity and ferroelectric state

The polarization of epitaxial GeTe films can be reversed by electrical gating

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

Outline

- General aim
- Ferroelectric Rashba semiconductors
 - I. Rashba effect in GeTe
 - II. Gating of ferroelectricity in the semiconductor GeTe
 - III. Spin-charge interconversion in GeTe

- Materials engineering
- Conclusions and perspectives

TWEET, Milano, 05/06/2023

Ferroelectric control of spin-to-charge

Spin Hall effect (bulk effect)

S. Murakami *et al.*, Science 301, 1348 (2003) A. Manchon *et al.*, Nature Mater. 14, 871 (2015)

P acts on the bulk band structure

$$\mathbf{J}_{s} = \vartheta_{SHE}(\mathbf{P}) \frac{2e}{\hbar} (\boldsymbol{\sigma} \times \mathbf{J}_{c})$$

Spin-Hall angle

Rashba-Edelstein effect (usually interfacial)

The chirality of Rashba bands naturally reverses with P

$$\lambda_{IREE} = \frac{j_C^{2D}}{j_s^{3D}} = \frac{\alpha_R \tau}{\hbar}$$

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

Ferroelectric control of spin-charge conversion

The polarization reversal switches the sign of the spin-to-charge conversion

POLITECNICO MILANO 1863

TWEET, Milano, 05/06/2023

Charge-to-spin conversion in bulk GeTe

Bulk results are the same for $$P_{\text{out}}$$ and $$P_{\text{in}}$$

Using a slab is more realistic but we cannot have currents flowing through the vacuum. In experiments $\sigma^{y_{zx}}$ is measured.

Calculated for bulk GeTe

Ferroelectric switching of spin-to-charge currents in GeTe

TWEET, Milano, 05/06/2023

christian.rinaldi@polimi.it http://rinaldi.faculty.polimi.it

32

Summary about GeTe

Ferroelectric switching of the semiconductor GeTe with gate

Ferroelectric control of roomtemperature spin-charge conversion in GeTe

Ferroelectric spin-orbit logic with Ferroelectric Rashba semiconductors

S. Varotto, JS, CR et al., Nature Electronics 4, 740–747 (2021)

What is the gap to fill in terms of materials?

Calculated for GeTe slab

I.

- Relatively low spin-to-charge conversion efficiency (a few %) in GeTe
- Conversion from bulk state only, surface states are hindered
- Relatively large switching voltages

S. Varotto, CR et al., Nature Electronics 4, 740–747 (2021)

Static nanomagnet, all electric

 Potential for monolithic integrability of GeTe on Si 34

TWEET, Milano, 05/06/2023

Outline

- General aim
- Ferroelectric Rashba semiconductors
 - I. Rashba effect in GeTe
 - II. Gating of ferroelectricity in the semiconductor GeTe
 - III. Spin-charge interconversion in GeTe

- Materials engineering
- Conclusions and perspectives

Band dispersion in Ge_{0.3}Sn_{0.7}Te

Sn-rich Ge_{0.3}Sn_{0.7}Te shows bulk Rashba features at low temperature (77 K)

TWEET, Milano, 05/06/2023

Band dispersion versus composition

Tailoring Rashba features with concentrations, in good agreement with DFT calculation

Manuscript in preparation

TWEET, Milano, 05/06/2023

Conclusions and perspectives

Detection of giant Rashba effect in Ge_xSn_(1-x)Te

Tailoring of T_c and E_c with the composition

□ To do: investigation of the coexistence of Rashba and topological features (% Ge < 20%)

