





# Worse might be better in ferroelectric HfO<sub>2</sub>



# T. Song, H. Tan, F. Sánchez, Ignasi Fina

Investigación

Ramón y Caja

Programa

ignasifinamartinez@gmail.com

ifina@icmab.es

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Barcelona, Spain



# @ICMAB



#### SCOPE

SELECTED WORKS

Ferroelectric oxide films for energy and memory devices group (FOXEM) aims to develop high quality new ferroelectric materials compatible with industry to study their properties from a fundamental to a device level. Electronics Industry is facing several bottlenecks to sustain the increasing demand and necessity of new data storage, computation and communication devices. New materials are needed and CMOS-compatible ferroelectrics based in Hf02 are in the spotlight. We investigate epitaxial oxide thin films of these oxides as model systems to understand and improve the ferroelectric properties. Our activities involve growth, structural studies, advanced characterization of electrical properties and prototyping of conventional and emerging memory devices.





Zr content (%)

#### Ferroelectric (Hf,Zr,La)O<sub>2</sub> films

T. Song, S. Estandia, I. Fina, and F. Sánchez, Ferroelectric (Hf,Zr,La)O2 films. Applied Materials Today 29 (2022). https://doi.org/10.1016/j.apmt.2022.101661

#### Epitaxial Ferroelectric HfO<sub>2</sub> Films: Growth, Properties, and Devices

I. Fina and F. Sánchez, Epitaxial Ferroelectric Hf02 Films: Growth, Properties, and Devices. ACS Appl. Electron. Mater. 3, 1550 (2021). https://doi.org/10.1021/acsaelm.1c00110

#### Control of up-to-down/down-to-up lightinduced ferroelectric polarization reversal

H. Tan, G. Castro, J. Lyu, P. Loza-Alvarez, F. Sánchez, J. Fontcuberta, and I. Fina, Control of up-to-down/down-toup light-induced ferroelectric polarization reversal. Materials Horizons 9, 2345 (2022). https://doi.org/10.1039/d2mh00644h





#### https://foxem.icmab.es/



# Ferroelectric and dielectric laboratory

LABS

LABORATORY OF MULTIFUNCTIONAL THIN FILMS ND COMPLEX STRUCTURES

About Us People

Labs Research

Training & Education Conferences News Jobs Services

FErroelectric and

Laboratory lead and designed by Dr. Ignasi Fina

**DiElectric Laboratory** 

of functional properties of ferroelectric and multiferroic thin films



• Impedance spectroscopy Z(w), for w<1MHz, look in I. Fina, et al., Thin Solid Films 518, 4710(2010) 







TWEET 2023, June 5th

Temperature

## Introduction: Present and future for memristors



## Introduction: Ferroelectric hafnium oxide





# Introduction: ferroelectricity in hafnium oxide





## Introduction: Ferroelectric hafnium oxide

#### Orthorhombic HfO<sub>2</sub>



#### Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors

Thomas Mikolajick, Stefan Slesazeck, Min Hyuk Park, and Uwe Schroeder

#### the adoption of ferroelectric halnium oxide.

Nevertheless, achieving a cycling endurance beyond the level of conventional charge-based nonvolatile memories remains a challenge.<sup>39,63</sup> Different strategies have been proposed to overcome these limitations<sup>64</sup> and encouraging results have recently

| Table I. Comparison of coercive field, $E_{e}$ , and switched polarization charge, $2P_{R}$ , for strontium bismuth tantalate (SBT), lead zirconium titanate (PZT), poly(vinylidene fluoride):tetrafluoroethylene (PVDF-TRFE), |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and doped hafnium oxide.                                                                                                                                                                                                       |

|                                                                                         | SBT (Sr <sub>2</sub> Bi <sub>2</sub> TaO <sub>9</sub> ) | PZT   | PVDF-TRFE | Doped HfO <sub>2</sub> |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-------|-----------|------------------------|
| Coercive field Ec in MV/cm                                                              | 0.05                                                    | 0.1   | 0.5       | 0.8–2                  |
| Switched charge (2 $\ensuremath{P_{\rm R}}\xspace)$ in $\ensuremath{\mu C/cm^2}\xspace$ | 15-25                                                   | 30-60 | 10        | 30-60                  |

#### T. Mikolajick, et al. MRS Bull. 43, 340 (2018)

#### Polarization-endurance dilemma



 Best endurance is NOT shown by films showing larger P<sub>r</sub>

J. Lyu, ..., IF, Sánchez, Nanoscale 12, 11280 (2020)



## Introduction: switching dynamics in polycristalline film





X. Lyu et al., presented at the 2019 IEEE Int. Electron Devices Meeting (IEDM), 2019.

A. K. Tagantsev, et al, *Phys. Rev. B-Condens. Matter Mater. Phys.*, 2002, **66**, 1-6. J. Y. Jo, et al, *Phys. Rev. Lett.*, 2007, 99, 1–4.



## Introduction: Epitaxial ferroelectric hafnium oxide

| deposition |                                 |            |                           |                             |                                                    |                         |                   |                                        |                                      |                                                    |                                                                                                       |                         |
|------------|---------------------------------|------------|---------------------------|-----------------------------|----------------------------------------------------|-------------------------|-------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|
|            | Material                        | Method     | Temperature<br>(°C)       | Atmosphere                  | Substrate                                          | Top/bottom<br>electrode | Thickness<br>(nm) | $\frac{P_{\rm r}}{(\mu {\rm C/cm}^2)}$ | $\stackrel{E_{\rm c}}{({ m MV/cm})}$ | Endurance (cycles)/E <sub>cycling</sub><br>(MV/cm) | $\begin{array}{c} \text{Retention}/\text{E}_{\text{poling}} \\ \left(\text{MV/cm}\right) \end{array}$ | ref                     |
|            | $Hf_{0.93}Y_{0.07}O_2$          | PLD        | 700 °C                    | 0.01 Torr (O <sub>2</sub> ) | YSZ(110)                                           | Pt/ITO                  | 15                | ~12                                    | ~2                                   |                                                    |                                                                                                       | Shimizu <sup>37</sup>   |
|            | $Hf_{0.93}Y_{0.07}O_2$          | PLD        | 700 °C                    | 0.01 Torr (O <sub>2</sub> ) | YSZ(111)                                           | Pt/ITO                  | 14                | $\sim 10$                              | $\sim 2$                             |                                                    |                                                                                                       | Katayama <sup>38</sup>  |
|            | $Hf_{0.93}Y_{0.07}O_{2}$        | Sputtering | RT + 1000 °C<br>annealing | 0.2 Torr (Ar)               | YSZ(111)                                           | Pt/ITO                  | 24                | ~11                                    | ~2.2                                 |                                                    |                                                                                                       | Suzuki <sup>45</sup>    |
|            | $Hf_{0.93}Y_{0.07}O_{2}$        | PLD        | RT + 1000 °C<br>annealing | 0.01 Torr (O <sub>2</sub> ) | YSZ(111)                                           | Pt/ITO                  | 15                | 15                                     | ~2.1                                 |                                                    |                                                                                                       | Mimura <sup>44</sup>    |
|            | $Hf_{0.93}Y_{0.07}O_{2}$        | PLD        | RT + 1000 °C<br>annealing | 0.01 Torr (O <sub>2</sub> ) | YSZ(111)                                           | */ITO                   | 111               | ~5                                     | ~1.4                                 |                                                    |                                                                                                       | Mimura <sup>80</sup>    |
|            | $Hf_{0.93}Y_{0.07}O_{2}$        | Sputtering | RT + 800 °C<br>annealing  | 0.2 Torr (Ar)               | YSZ(111) and<br>-(001)                             | */ITO                   | 380 and<br>1080   | ~5                                     | ~1                                   |                                                    |                                                                                                       | Shimura <sup>91</sup>   |
|            | ${\rm Hf_{0.94}Fe_{0.06}O_2}$   | Ion beam   | RT + 900 °C<br>annealing  | $3.8 \times 10^{-5}$ Torr   | YSZ(001)                                           | Pt/ITO                  | 20                | 8.8                                    | ~2                                   |                                                    |                                                                                                       | Shiraishi <sup>41</sup> |
|            | $Hf_{0.9}Ce_{0.1}O_2$           | Ion beam   | RT + 900 °C<br>annealing  | $3.8 \times 10^{-5}$ Torr   | YSZ(001)                                           | Pt/ITO                  | 30                | ~5                                     |                                      |                                                    |                                                                                                       | Shiraishi <sup>42</sup> |
|            | $Hf_{0.93}Y_{0.07}O_2$          | Sputtering | RT                        | 0.01 Torr (Ar)              | YSZ(111)                                           | Pt/ITO                  | 16                | 15                                     | 2.3                                  |                                                    |                                                                                                       | Mimura <sup>48</sup>    |
|            | $Hf_{1-x}Y_{x}O_{2}(x = *)$     | PLD        | 700 °C                    | 0.15 Torr (O <sub>2</sub> ) | YSZ/Si(001)                                        | Pt/-                    | *                 | ~20 (leaky)                            | *                                    |                                                    |                                                                                                       | Lee <sup>90</sup>       |
|            | $Hf_{0.936}Si_{0.044}O_{2}$     | PLD        | 700 °C                    | 0.1 Torr (O <sub>2</sub> )  | Nb:STO(111)<br>and -(110)                          | Au-Cr/substrate         | 3-15              | up to ~32                              | 4-5                                  |                                                    |                                                                                                       | Li <sup>50</sup>        |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 700 °C                    |                             | YSZ(111) and<br>-(110)                             | Au-Cr/TiN               | 15                | ~7-20                                  | 1.1-2.3                              |                                                    |                                                                                                       | Li <sup>40</sup>        |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 800 °C                    | 0.1 mbar                    | STO(001)                                           | Pt/LSMO                 | 9                 | 20                                     | 3                                    | $1 \times 10^{8} (5)$                              | >10 (6.1)                                                                                             | Lyu <sup>52</sup>       |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 800 °C                    | 0.1 mbar                    | STO(001)                                           | LSMO/LSMO               | 5                 | 34                                     | ~5                                   |                                                    |                                                                                                       | Wei <sup>51</sup>       |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 800 °C                    | 0.1 mbar                    | STO(001)                                           | LSMO/LSMO               | 9                 | 18                                     | ~3                                   | $1 \times 10^{5} (4.4)$                            |                                                                                                       | Wei <sup>51</sup>       |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 550 °C                    | 0.13 mbar                   | LAO(001)                                           | Pd/LSMO                 | 10                | 20                                     | 2.4                                  |                                                    |                                                                                                       | Yoong <sup>78</sup>     |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 800 °C                    | 0.1 mbar                    | YSZ/Si(001)                                        | Pt/LSMO                 | 4.6               | 33                                     | ~4                                   | $1 \times 10^{11} (5.4)$                           | >10 (5.4)                                                                                             | Lyu <sup>116</sup>      |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 800 °C                    | 0.1 mbar                    | STO/Si(001)                                        | Pt/LSMO                 | 7.7               | 34                                     | ~3                                   | $1 \times 10^{9} (5.2)$                            | >10 (5.2)                                                                                             | Lyu <sup>66</sup>       |
|            | $Hf_{0.5}Zr_{0.5}O_2$           | PLD        | 800 °C                    | 0.1 mbar                    | GdScO <sub>3</sub> and<br>TbScO <sub>3</sub> (001) | Pt/LSMO                 | 9                 | ~24                                    | ~2.5                                 |                                                    |                                                                                                       | Estandia <sup>64</sup>  |
|            | $Hf_{0.5}Zr_{0.49}La_{0.01}O_2$ | PLD        | 800 °C                    | 0.1 mbar                    | STO(001)                                           | Pt/LSMO                 | 4.8               | ~20                                    | ~3.7                                 | $5 \times 10^{10} (5.4)$                           | >10 (5.4)                                                                                             | Song <sup>63</sup>      |
|            | $Hf_{0.5}Zr_{0.49}La_{0.01}O_2$ | PLD        | 800 °C                    | 0.1 mbar                    | STO/Si(001)                                        | Pt/LSMO                 | 6.3               | ~30                                    | ~3.5                                 | $1 \times 10^{9} (4.3)$                            | >10 (7.2)                                                                                             | Song <sup>63</sup>      |
|            | Hfagy Lagor Og                  | PLD        | 600 °C                    | 0.1 mbar                    | STO(001)                                           | Pt/LSMO                 | 12                | ~16                                    | $\sim 2.7$                           | $2 \times 10^{7} (5.3)$                            | >10(5.3)                                                                                              | Li <sup>88</sup>        |

 ICMAB systematic studies on endurance and retention are unique.
 Other reported results are far from the best

performance of ICMAB films

#### Review: Fina and Sánchez, ACS Applied Electronic Materials 3, 1530 (2021)



## Introduction: Epitaxial ferroelectric hafnium oxide, taxonomy





#### Introduction: ferroelectricity in epitaxial HZO (homemade)





#### Introduction: ferroelectricity in epitaxial HZO (homemade)





epi-La:HfO<sub>2</sub> → LSMO →

- All films are relaxed
- There are not variations of lattice parameters depending on the substrate

monoclinic

MgO

- You can't change the phase by strain
- The orthorhombic phase ratio depends on the selected substrate











TWEET 2023, June 5th

EXCELENCIA SEVERO OCHOA





#### Results: strain/stress





#### Results: polarization dependence on orthorhombic phase amount





#### Results: fatigue dependence on orthorhombic phase amount





#### Results: fatigue dependence on orthorhombic phase amount





#### Results: switching dynamics







### Results: effect of fatigue





After 10<sup>6</sup> cycles switching time decreases by ≈60%
 KAI is still valid



#### Results: switching dynamics





#### Results: switching dynamics





Results: in brief...

Mix phase film shows switched polarization using the same pulse width than the phase pure film







In films on STO (coexisting orthorhombic/monoclinic phases), charged defects/incoherent grain boundary help on the initiation of the nucleation.

M. D. Glinchuk et al., J. Alloys Compd. 830, 153628 (2020). P. Nukala et al., Science 372, 630 (2021).



#### Scenario: monoclinic grains are buffers for pinning propagation



EXCLEMENTAL DE BARELONA EXCLEMENTA EXCLE

#### Beyond: neuromorphic-like behavior



1.H. Y. Yoong et al., Adv. Funct. Mater. 28, 1806037 (2018).
 2.B. Max et al., ACS Appl. Electron. Mater. 2, 4023 (2020). 15U.

Long term potentiation/depression and STPD characteristics at the shortest pulse time

Both are non symmetric due to the defects



## Beyond: Piezoelectric response











Tan, ...IF, 10.1039/D3TC01145C (Communication) J. Mater. Chem. C, 2023, Advance Article Song, ...IF, Nanoscale 14, 2337 (2020) Journal of Materials Chemistry C 10, 8407



### Beyond: Piezoelectric response







## Conclusions

Ferroelectric polarization depends on orthorhombic phase amount (negligible strain effects)





# Endurance is not better in single-phase films

# Faster switching is observed in films with less orthorhombic phasae



